理学院学术报告20201110
发布人:何杰  发布时间:2020-11-08   浏览次数:10

报告题目:High-order numerical methods for hyperbolic conservation laws


报告人:邱建贤 教授

厦门大学


报告时间:20201110日下午1600


报告地点:腾讯会议-会议号:110 121 531


报告摘要:Hyperbolic conservation laws and convection dominated problems play an important role arise in applications as diverse as compressible and incompressible flows, aerodynamics, aero-acoustics, MHD and electromagnetism among many others. This is why devising robust, accurate and efficient methods for numerically solving these problems is of considerable importance and as expected, has attracted the interest of many researchers and practitioners. The need for such methods prompted and sustained the remarkable development of the so-called high-resolution finite difference, finite volume and finite element methods for non-linear hyperbolic systems.  Essentially non-oscillatory (ENO), weighted ENO (WENO) methods and Runge-Kutta discontinuous Galerkin (RKDG) methods play a very important role in such developments.  In this presentation, we will give a survey of WENO and RKDG methods.

 


        报告人简介:邱建贤,男,博士,厦门大学数学科学学院教授,国际著名刊物J. Comp. Phys. (计算物理) 编委。从事计算流体力学及微分方程数值解法的研究工作,在间断GalerkinDG)、加权本质无振荡(WENO)数值方法的研究及其应用方面取得了一些重要成果,已发表论文一百多篇。主持国家自然科学基金重点项目和联合基金重点支持项目各一项, 参与欧盟第六框架特别研究项目, 是项目组中唯一非欧盟的成员。多次被邀请在国际会议上作大会报告。